16th Annual PDF Solutions Users Conference

PDF/SOLUTIONS"

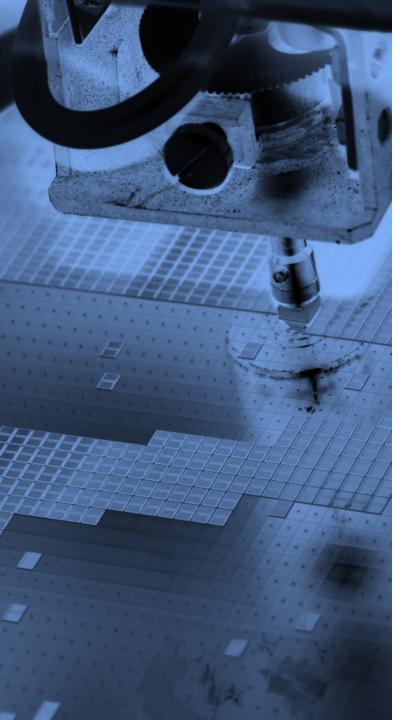
S1.3 - Machine Learning in Exensio®

October 15, 2019

Jeff David, VP of AI Solutions

This presentation contains forward-looking statements regarding PDF Solutions' future products and business prospects that involve risk and uncertainty. Actual results could differ materially from those discussed. You should review PDF Solutions' SEC filings, including its annual report on Form 10-K and quarterly reports on Form 10-Q, for more information on these risks and uncertainties. PDF Solutions does not undertake an obligation to update any such statements.

© 2019 PDF Solutions, Inc. All rights reserved.


What is Machine Learning??

- \circ Algorithms that iteratively learn from data to find hidden insights
- Allows for automatic generation of models that can analyze massive amounts of data to deliver faster, more accurate predictions
- "Learns" complex correlations between incoming data and outputs.

Everyday Examples of ML

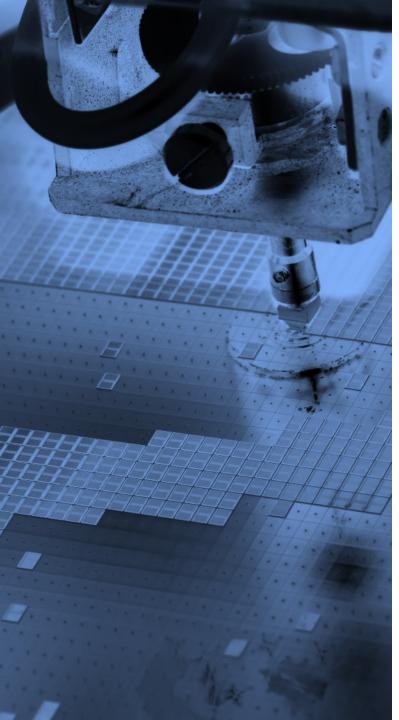
- □ Optical character recognition
- □ Face detection: Facebook
- Banking: Mobile Check deposits / Fraud detection
- □ Traffic Prediction: Waze / Google Maps
- □ Recommendation Engines: Netflix / YouTube / Google
- □ Spam filtering: identify emails as spam or non-spam
- □ Self Driving Cars: Google, Tesla

Agenda

• Why is implementing machine learning so difficult in the semiconductor industry??

 PDF is UNIQUELY positioned to deliver the promise of AI to the industry

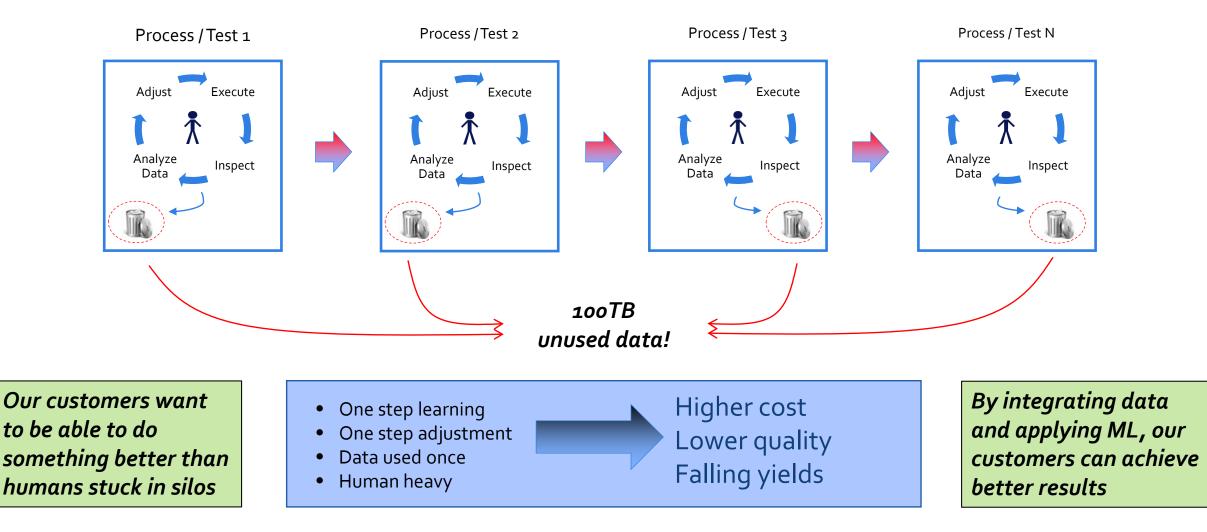
 Augmenting analytics with AI/ML to improve results and make it easier to use



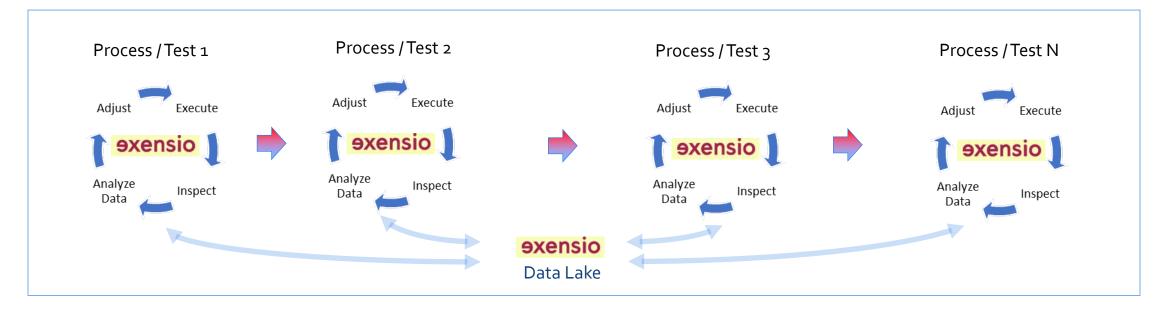
Other industries have more sophisticated AI than the semiconductor industry Why is that?

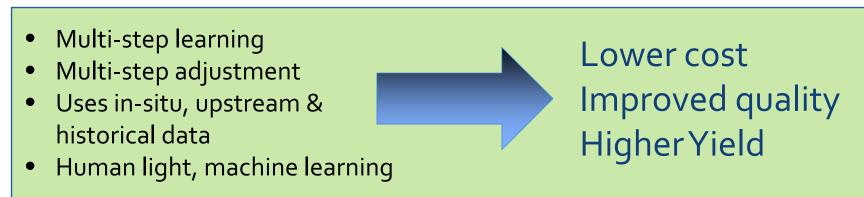
Active learning achine learning Model Pipeline: a Collection of Steps, Methods and model aining se Ĺ **Best-Known Practices that Solve the Problem** unlabeled pool U **Outlier detection** Imputation Scaling / Normalization Deep learning Train Transformed NON-standardized training dataset after PCA Transformed standardized training dataset after PC class 1 class ' class 2 class 2 2.0 ••• class 3 ••• class 3 0.5 0.5 . 0.0 Semi-Supervised 800 1000 120 -2 2 1st principal componen Threshold selection Semi-supervised learning Feature selection & Statistical tests & uncertainty Decision threshold engineering estimation hreshold Assume Ho is true" means p = 0.40 the simulation and the model If 0.40 support Obama in the TN TP population, what is the Simulated Sampling probability that at most 0.35 Distribution support him in a sample of 2001 (1500 random samples) 17 out of 1500 of sample onortions = 0.078Hyper-parameter tuning 0.35 0.40 0.45 0.50 Ensemble Algorithms / ML Sample proportions Normal Probability Model oStratified K-fold cross validation What is the probability that sample CLASSICAL MACHINE LEARNING Sampling Distributio proportions $\leq 0.35?$ **ONE ITERATION OF A 5-FOLD CROSS-VALIDATION:** Area is probability. What is t 1-ST FOI D UNSUPERVISED ED Dashboard - Daily SUPERVISED Visual analytics 0.35 0.40 0.45 ົດຮັດ Sample proportions 2-ND FOLD CLUSTERING CLASSIFICATION Second-level algorithm ASSOCIATION Standard Normal Curve wear togethers 3-RD FOLD REGRESSION 1-11-1 -2 4-1 DIMENSION -1.44REDUCTION 4-TH FOLD: Z-scores (generalization) 5-TH FOLD **PDF**/SOLUTIONS[®] PDF Solutions, All Rights Reserved

Active learning Model Pipeline: a Collection of Steps, Methods and **Best-Known Practices that Solve the Problem** unlabeled pool **Outlier detection** Scaling / Normalization Imputation **Deep learning** Train Ż., class 1 class 2 class 2 Nature of the problem dictates what Exensio[®] has a large library of tools to leverage, including open type of algorithm and what order of various methods to use source technologies We enable our customers to deploy Use appropriate tools strategically. their own models and ML in our If the only tool you have is a platform hammer, you tend to see Exensio[®] enables sharing of results every problem CLASSIFIC as a nail across your enterprise 5-TH FOLD: **PDF**/SOLUTIONS^{*}


PDF Solutions, All Rights Reserved

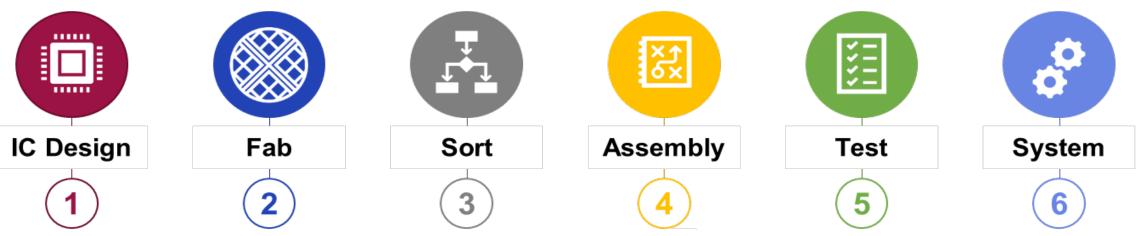
Some Challenges for ML in the Semiconductor Industry

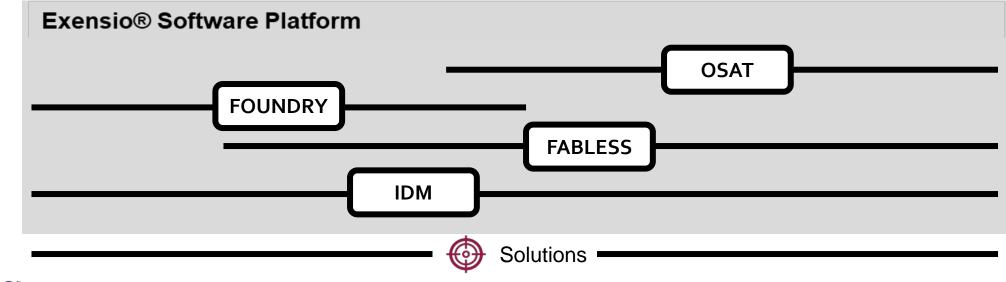

- o Multimodal batch trajectories due to product mix
- o Test program changes
- o Process drift and shift, tool recalibration
- o Changing failure modes
- o Small amount of training data
- o Lack of labels
- $\,\circ\,$ Lack of data for emerging technologies
- $\,\circ\,$ Lack of traceability for root cause
- What happens when your data doesn't arrive?
 What do you do if it is corrupt?
 What kind of prediction do you make?


Today's Struggle: Silos and Local Optimization

PDF/SOLUTIONS^{*}

Exensio[®]: Global <u>and</u> Local Optimization




PDF/SOLUTIONS^{*}

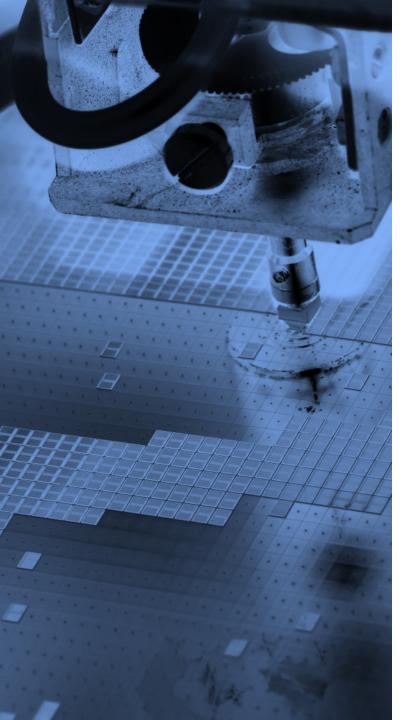
PDF is UNIQUELY Positioned to Deliver the Promise of AI to the Industry

PDF Solutions: Spanning the Supply Chain

PDF/SOLUTIONS^{*}

PDF Solutions: Spanning the Supply Chain

- ✓ PDF has access to the RIGHT data, including new types of data
- ✓ PDF has access to a breadth of data across the supply chain. PDF aligns this data to make it relevant.
- PDF has the infrastructure built up to integrate and leverage all of this data to deliver on the promise of AI
- \checkmark "If I have seen further, it is by standing upon the shoulders of giants"


-Sir Isaac Newton

https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-168

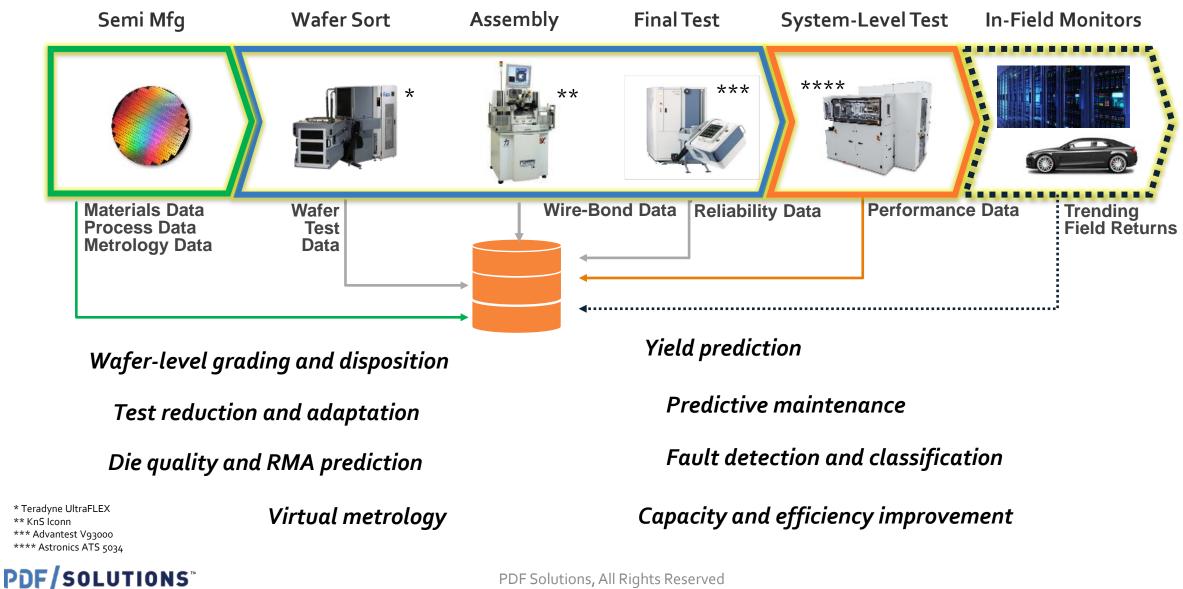
IC De

Semantic Models: A Key Element for Applying Machine Learning

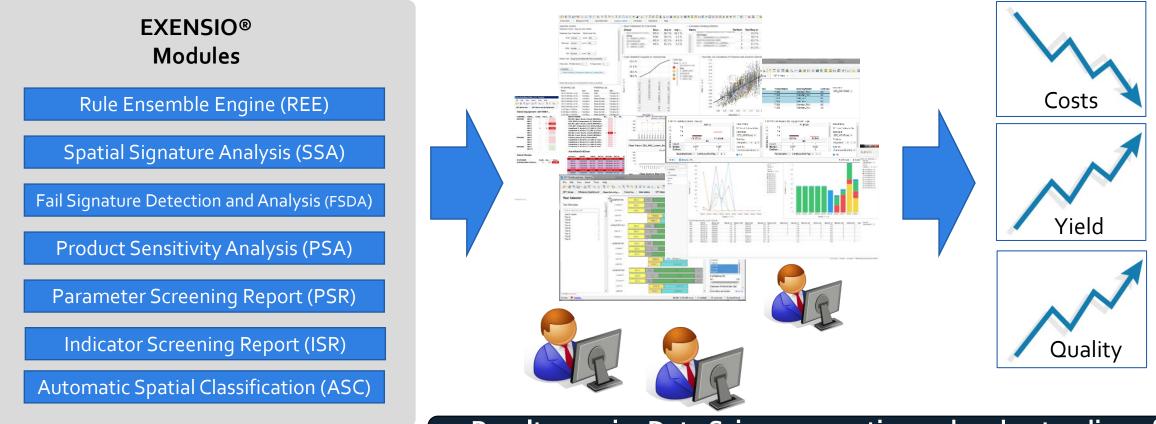
 The semantic data model is a method of structuring data in order to represent it in a specific logical way. It is a conceptual data model that includes semantic information that adds a basic meaning to the data and the relationships that lie between them.

https://www.techopedia.com/definition/30489/semantic-data-model

o Examples:


- Aligning events in a fab with wafer data to answer question like "which wafers were processed with the new batch of resist"?
- Mapping equipment signals across a fleet of tools to account for configuration differences
- Meaningful merging of chip data as the chips flow through wafer sort, assembly, and final test

Semantic models allow our customers to deploy machine learning to production



Augmenting Analytics with ML to Improve Results and Make it Easier to Use

A Unified View of Semiconductor Data is Needed

Lots of Great Modules in Exensio[®] that Incorporate 20 Years of PDF Expertise, but Requires all the Right Skills to get the Needed Results

Results require Data Science expertise and understanding of semiconductor manufacturing

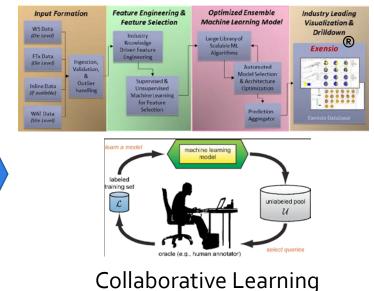
PDF/SOLUTIONS^{*}

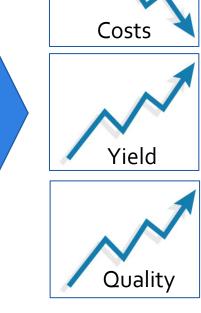
PDF Solutions, All Rights Reserved

AIM Solutions Overview (Fabless/IDM)


	Solution		Description	ROI
1.	IMD – Intelligent Material Disposition (aka MRB)	Valet Binnap	Wafer level grading & disposition with near real time execution	 ✓ Reduce engineering disposition time by > 50% ✓ Improves quality of disposition
2.	ST - Smart Testing – Predict Final Test & Burn-in	Trade-Off Improves with: - More upstream test insertions (WaterSort, PCM,) - Vinine metrology / tool sensor / defect data from the fab - More dup volume - Mo	Prediction of test requirements based on electrical wafer Sort parametrics	 ✓ Reduce test or burn-in requirements by 20-60%
3.	ELF – Early Life Failure detection (die level MRB)		Comprehensive Die Quality Grading - Classify risk based on Sort parametrics	 Prevent quality and reliability escapes by detecting high risk die at Sort
4.	FPM – Fab & Final Test Predictive Modeling	Water Yield Impact by Parameter Lones, wro Lones, wr	Predict wafer and die level yield & parametric prior to Sort & Final Test operations (or other responses).	 ✓ Improved inventory management ✓ Reduce yield loss & excursions ✓ Reduces engineering investigative resource

AIM Solutions Overview (Foundry/IDM)


	Solution	Description	ROI	
5.	FDC – Fault Detection and Classification	FDC to YMS AI modeling & prediction for yield variability reduction & control plan upgrade	 ✓ 8% Yield Improvement ✓ 40% excursion reduction ✓ 7% Faster NPI Ramp Learning Rate 	
6.	CEI – Capacity & Efficiency Improvement (aka OEE)	Improve OEE, Fab Capacity, & wafer through-put by matching tools & chamber operations	 ✓ 10% improvement in bottleneck tool capacity ✓ >20% improvement in efficiency (thru-put) 	
7.	ASD – Adaptive Signature Diagnostics (Smart Analysis)	Uses spatial signature analysis, ML, to classify Sort failures and auto-diagnose likely root cause of yield loss	 ✓ Identify sources of yield loss immediately after Sort. ✓ 5x Reduction in engineering investigative resources. 	
8.	TEP – Trace based Excursion Prevention	Use AI to identify abnormal tool operation via text log & raw FDC sensor trace data	 Prevent large scale excursions at the tool through trouble prevention 	


AIM Solutions with AI Makes it Easier to Obtain Optimal Results

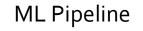
EXENSIO® AIM SOLUTIONS

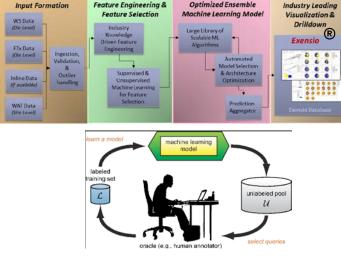
ML Pipeline

AIM Solutions with AI Makes it Easier to Obtain Optimal Results

EXENSIO® AIM SOLUTIONS

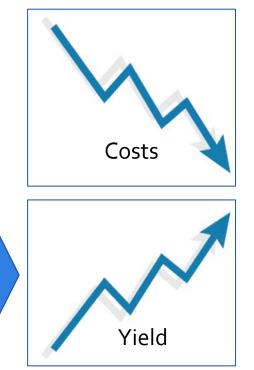
Early Life Failure Prediction (ELF)


Fab Predictive Modeling (FPM)


Fault Detection and Classification (FDC)

Capacity & Efficiency Improvement (CEI)

Adaptive Signature Diagnostics (ASD)


Trace-based Excursion Prevention (TEP)

Collaborative Learning

- ✓ Human light, Better results
- ✓ Data Science enabled in the tool you don't have to be a data scientist to set it up or maintain it
- 1000's of virtual experts enabled by AI

With AI, 20 years of PDF expertise is applied in more productive ways

Augmenting Analytics with ML to Make it Easier to Use and Deploy

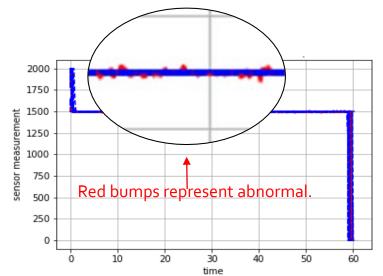
Our systems make it easy for our customers to incorporate their knowledge to improve performance

> Allow customer to deploy their own models

Allow user to implement their own feature engineering and transformation

- Collaborative Learning scalable across different use cases and datasets
 - Provides capability such that you don't need to be a semi expert and data scientist
 - Includes our customer knowledge in the training and refinement of the models.

Using ML, we automate the work performed by our customers for their use cases


- ➢ ETL − Dynamic Schema
- Automatic model training designed to be insensitive to product/tool type
- Allow users to choose models to deploy based on confusion matrix response
- Aside: we want to be careful how many knobs we add as this dilutes the automated nature of the model training

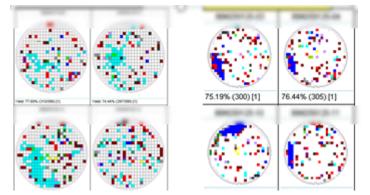
FDC – RESULTS on Large Volume of Production Wafers Across Multiple Process Steps

Process Step	True Positive Rate (actual = normal, prediction = normal)	True Negative Rate (actual = abnormal, prediction = abnormal)	
Process Step 1	100.00%	100.00%	
Process Step 2	99.82%	99.90%	
Process Step 3	97.12%	99.38%	
Process Step 4	99.86%	99.23%	

- Data Science enabled in the tool you don't have to be a data scientist to set it up or maintain it
- ✓ 1000's of virtual experts enabled by AI
- ✓ Better IP security distributed knowledge remains in the tool itself

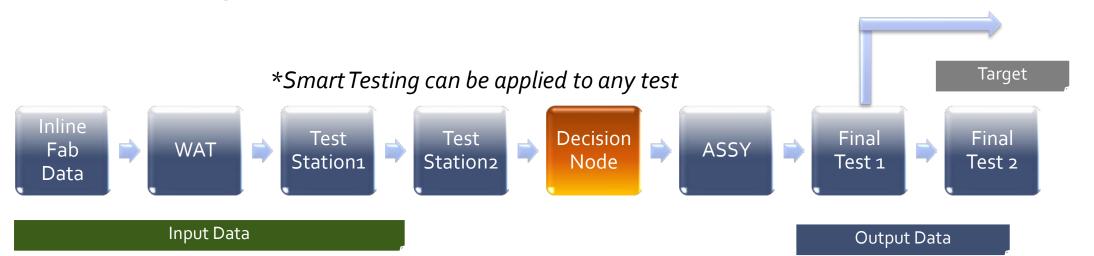
- Single Machine Learning Pipeline produced accurate model for multiple processes
- No user modification of algorithm settings from process to process
 - Many tools and recipes per process step
- Test results on a large volume of advanced device node production wafers

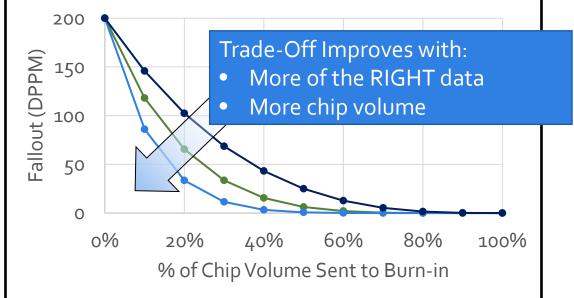
Collaborative Learning: Captures User Knowledge in the System


- o Final report provides the user a way to assign a new class per wafer, and retrain the model
- Human interaction via Collaborative Learning allows the user to continually improve and validate wafer classifications, building user confidence in the system.

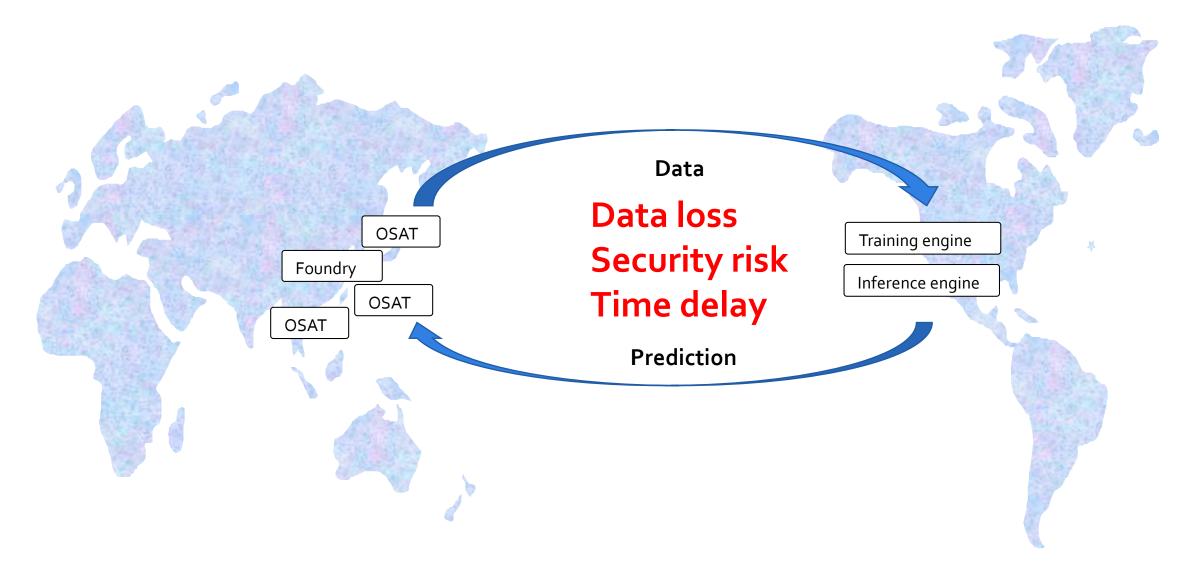
Similar to the "like" button

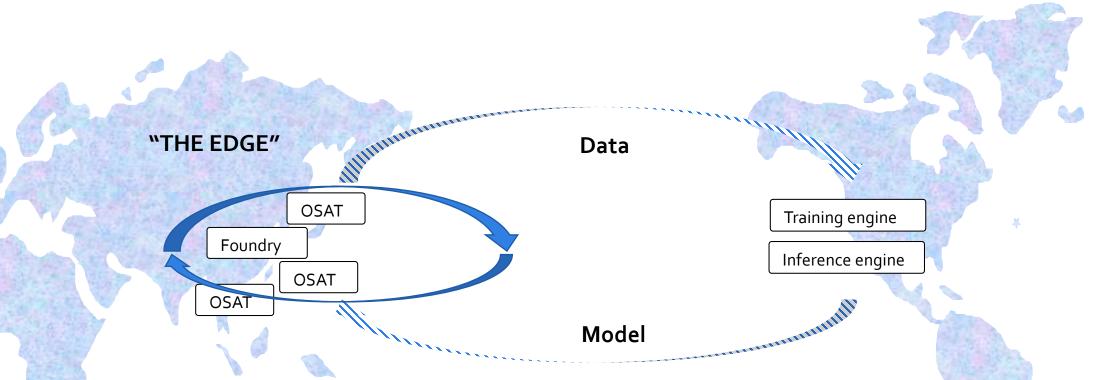
LOT WAFER Partial Wafers RB Class CL Class User Class True A A True A A A True A A A True A A A True C B A True C C B A True A B Untagged True B B B B False A C C C True B B Untagged Untagged True B B Untagged Untagged True A A A A True A A A A True C B Untagged True A A True A A A A A A A True A A A A A A A A A A	6 columns fro	6 columns from MRBWaferTable					
TrueAAATrueCBATrueABUntaggedTrueBBBTrueCCBFalseACCTrueBBUntaggedTrueBBUntaggedTrueCBUntaggedTrueCBUntaggedTrueCBUntaggedTrueCBUntaggedTrueCAATrueAATrueAATrueAATrueBBTrueBBTrueBBTrueBBTrueAATr	LOT	WAFER	 Partial Wafers 	RB Class	CL Class	User Class	
TrueCBATrueABUntaggedTrueCCBTrueCCBFalseACCTrueBBUntaggedTrueBBUntaggedTrueCBUntaggedTrueCBUntaggedTrueCBUntaggedTrueCBUntaggedTrueAAATrueAAATrueAAUntaggedTrueAAUntaggedTrueBBBTrueBBBTrueBBATrueAAA <td></td> <td></td> <td>True</td> <td>А</td> <td>А</td> <td>А</td> <td></td>			True	А	А	А	
TrueABUntaggedTrueBBBTrueCCBFalseACCTrueBBUntaggedTrueBBUntaggedTrueCBUntaggedTrueCBUntaggedTrueCBUntaggedTrueCBUntaggedTrueCBUntaggedTrueAAATrueAAATrueAAUntaggedTrueAAATrueBBBTrueBBATrueBBATrueAAA <td></td> <td></td> <td>True</td> <td>Α</td> <td>А</td> <td>Α</td> <td></td>			True	Α	А	Α	
TrueBBBTrueCCBFalseACCTrueBBUntaggedTrueBBUntaggedTrueCBUntaggedTrueCBUntaggedTrueAAATrueAAATrueAAATrueAAUntaggedTrueAAATrueBBBTrueBBATrueBBATrueAAATrueA <td></td> <td></td> <td>True</td> <td>С</td> <td>В</td> <td>А</td> <td></td>			True	С	В	А	
TrueCCBFalseACCTrueBBUntaggedTrueBBUntaggedTrueCBUntaggedTrueCBUntaggedTrueCBUntaggedTrueCAATrueAAATrueAAUntaggedTrueAAUntaggedTrueAAUntaggedTrueBBBTrueBBATrueBBATrueAAA<			True	Α	В	Untagged	
FaiseACCTrueBBUntaggedTrueBBUntaggedTrueCBUntaggedTrueCBUntaggedTrueCAATrueCAATrueCAATrueAAATrueAAATrueAAUntaggedTrueBBBTrueBBATrueAAA			True	В	В	В	
TrueBBUntaggedTrueBBUntaggedTrueBBUntaggedTrueCBUntaggedTrueCBUntaggedTrueCAATrueCAATrueAAATrueAAUntaggedTrueAAATrueBBBTrueBBATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAA			True	С	С	В	
TrueBBUntaggedTrueBBUntaggedTrueCBUntaggedTrueCBUntaggedTrueAAATrueCAATrueCAATrueAAUntaggedTrueAAUntaggedTrueAAUntaggedTrueBBBTrueBBATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAA	1007.0001	100,000.	False	А	С	С	
TrueBBUntaggedTrueCBUntaggedTrueCBUntaggedTrueAAATrueCAATrueAAUntaggedTrueAAUntaggedTrueAAUntaggedTrueBBBTrueBBATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAATrueAATrueAATrueAA	100,000,000		True	В	В	Untagged	L
TrueCBUntaggedTrueCBUntaggedTrueAAATrueCAATrueCAATrueAAUntaggedTrueAAUntaggedTrueBBBTrueBBATrueAAATrueAAATrueBBATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAA	100.000		True	В	В	Untagged	
TrueCBUntaggedTrueAAATrueCAATrueCAATrueAAUntaggedTrueBBBTrueBBATrueAAATrueCCATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAA	1000.0001		True	В	В	Untagged	
TrueAAATrueCAATrueCAATrueAAUntaggedTrueBBBTrueBBATrueAAATrueCCATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAA	1000.0001		True	С	В	Untagged	
TrueCAATrueAAUntaggedTrueBBBTrueBBATrueAAATrueCCATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAATrueAAA	1000.0001		True	С	В	Untagged	
TrueAAUntaggedTrueAAUntaggedTrueBBBTrueAAATrueCCATrueAAATrueAAATrueAAATrueAAATrueAAA	100.000		True	А	А	А	
TrueAAUntaggedTrueBBBTrueAATrueCCATrueAAATrueAAATrueAAA	1000,00010	100,000.	True	C	А	А	
TrueBBBTrueBBATrueAAATrueCCATrueAAA			True	А	А	Untagged	
TrueBBATrueAATrueCCTrueAA			True	А	А	Untagged	
TrueAATrueCCTrueAA			True	В	В	В	
TrueCCATrueAAA			True	В	В	А	
True A A A			True	А	А	А	
			True	С	С	А	
True C C A	1007.0001	107,781	True	А	А	А	
			True	С	С	А	

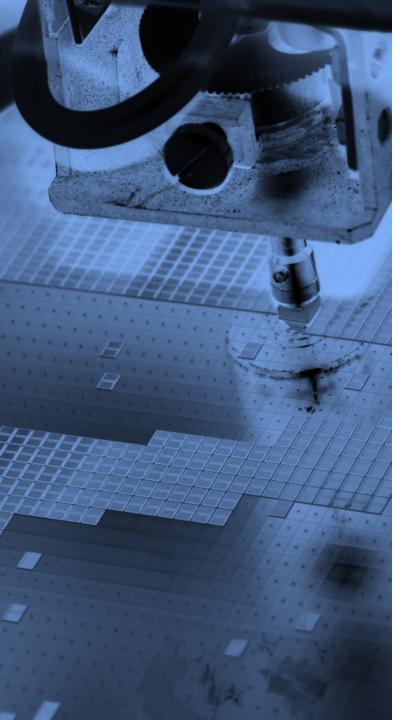

The user can modify the classifications to continuously improve the model


Method	Hit Rate
Standard Statistics	58%
Fab Model (semantic model)	71%
Collaborative Learning	91%

You don't need to be a data scientist or know statistics to use AI

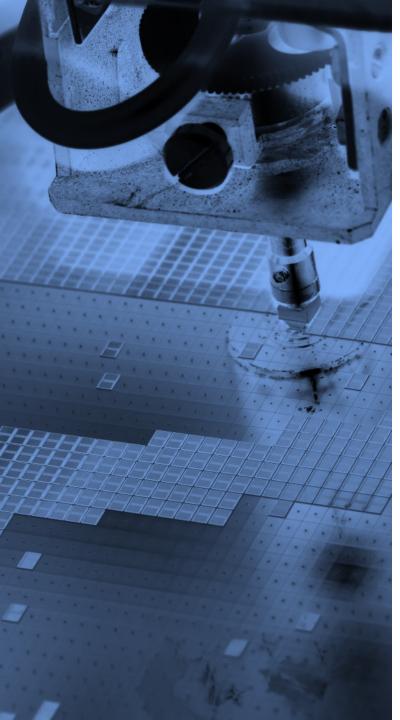

Smart Testing


- Goal: No risky chips to field, while diverting chips from expensive tests
- Goal: Improve quality and reliability by quickly identifying the root cause of field returns
- Goal: Focus test resources on product that are at the highest risk for failure
- Goal: Reduce test cost by diverting low-risk product volume away from expensive tests
- $\circ\,$ Goal: Smarter product binning by quality


Deployment Challenges

DEX™ Enables Edge Deployment Architecture

- Edge Analytics fast turnaround times on predictions, making ACTIONABLE predictions a reality
- Reduced data loss
- Brings advanced ML capabilities to Adaptive Testing
- ✓ Allows user to develop their own models using latest ML technologies



Overall Benefits

 $\,\circ\,$ Access to a breadth of data, and access to the RIGHT data

- o Infrastructure already built up across the supply chain
- Data Science enabled in the tool you don't have to be a data scientist to set it up or maintain it
- Our systems are designed to make it easy for our customers to incorporate their knowledge to improve performance
- We leverage state-of-the-art AI technologies intended to bring significant ROI to our customers

\circ Architected for production-worthiness

In Summation...

 The semiconductor industry has been slower to adopt AI technologies than other industries

 Given those challenges, PDF is UNIQUELY positioned to deliver the promise of AI to the industry

 PDF's goal is to make it easier to adopt AI – you don't need to be a data scientist

o ...the AI enablement provided by PDF is targeted to bring significant value to our customers

Than Alou

PDF/SOLUTIONS"

0

pdf-solutions pdfsolutionsinc

pdfs.inc pdf_solutions

pdf_cn